Bail-ins and Bailouts: Incentives, Connectivity, and Systemic Stability

Benjamin Bernard1 Agostino Capponi2 Joseph E. Stiglitz2

1UCLA
2Columbia University

Task Force Meeting, New York
August 29, 2018
Introduction
Systemic risk in an interbank network

Financial institutions are connected through bilateral contracts \((L_{ij})_{ij}\).
Financial institutions are connected through bilateral contracts \((L_{ij})_{ij}\):

- Shock hits banks’ outside assets, leading to fundamental defaults \(\mathcal{F}\).
Systemic risk in an interbank network

Financial institutions are connected through bilateral contracts \((L_{ij})_{ij}\):

- Shock hits banks’ outside assets, leading to fundamental defaults \(\mathcal{F}\).
- Shock propagates through network, leading to contagious defaults \(\mathcal{C}\).
Financial institutions are connected through bilateral contracts $(L_{ij})_{ij}$:

- Shock hits banks’ outside assets, leading to fundamental defaults F.
- Shock propagates through network, leading to contagious defaults C.

Systemic risk in an interbank network
Research Objectives

Existing studies take the banks as inactive agents, and measure the cascading contagion effects:

- there is either no intervention to stop a default cascade,
- intervention follows exogenously specified protocols.
Research Objectives

Existing studies take the banks as inactive agents, and measure the cascading contagion effects:

- there is either no intervention to stop a default cascade,
- intervention follows exogenously specified protocols.

2-step agenda:

- Endogenize intervention after the occurrence of defaults,
- Endogenize network formation.
Methods of intervention

Bailout: Government provides liquidity through taxpayer money.

Among others, Citigroup, AIG Insurance, and UBS were bailed out by their respective government during the recent crisis.

Bail-in: Creditors voluntarily forgive part of the debt in exchange for equity in the reorganized company.

The hedge fund Long Term Capital Management was bailed-in in 1998. Under the supervision of the Federal Reserve Bank of New York, a total of 14 banks agreed to participate in a recapitalization plan.

Subsidized/assisted bail-in: Contributions from regulator and banks.

Bear Stearns was sold to JP Morgan Chase for $1.2 billion with a government injection of $30 billion.
Model of Financial Network
Financial network is described by:

- Banks have bilateral exposures L_{ij}, denoting j’s liability to i. Denote
 \[L^j = \sum_{i=1}^{n} L_{ij}, \quad \pi^j = \frac{L_{ij}}{L^j}. \]

- Each bank i has investment e^i in assets outside the interbank network.
- Each bank i has net cash holdings c^i.

Financial network is described by:

- Banks have bilateral exposures L_{ij}, denoting j’s liability to i. Denote
 \[L^j = \sum_{i=1}^{n} L_{ij}, \quad \pi^j = \frac{L_{ij}}{L^j}. \]

- Each bank i has investment e^i in assets outside the interbank network.
- Each bank i has net cash holdings c^i.

Financial network is described by:

- Banks have bilateral exposures L^{ij}, denoting j’s liability to i. Denote

$$L^j = \sum_{i=1}^{n} L^{ij}, \quad \pi^{ij} = \frac{L^{ij}}{L^j}.$$

- Each bank i has investment e^i in assets outside the interbank network.
- Each bank i has net cash holdings c^i.

Welfare losses: Liquidation of assets / bankruptcy costs:

- Liquidation losses are equal to $(1 - \alpha) \times$ liquidated assets.
- Bankruptcy cost is $(1 - \beta) \times$ recovered assets.
Model of Intervention
Stages of the game

The game has the following stages:

1. The government proposes an assisted bail-in \((b, s)\).
2. Each bank \(i\) chooses \(a^i\), whether or not it accepts the proposal.
Stages of the game

The game has the following stages:

1. The government proposes an assisted bail-in \((b, s)\).
2. Each bank \(i\) chooses \(a^i\), whether or not it accepts the proposal.
3. If some banks reject, government has three options:

 (a) Proceed with the rescue, but make up for the contributions of defecting banks. Resulting welfare losses are \(w_\lambda(b, s, a)\).
The game has the following stages:

1. The government proposes an assisted bail-in \((b, s)\).
2. Each bank \(i\) chooses \(a_i\), whether or not it accepts the proposal.
3. If some banks reject, government has three options:
 (a) Proceed with the rescue, but make up for the contributions of defecting banks. Resulting welfare losses are \(w_\lambda(b, s, a)\).
 (b) Resort to public bailout \((0, s_P)\) with welfare losses \(w_P = w_\lambda(0, s_P)\).
 (c) Abandon the rescue, which leads to welfare losses \(w_N = w_\lambda(0, 0)\).
The game has the following stages:

1. The government proposes an assisted bail-in \((b, s)\).
2. Each bank \(i\) chooses \(a_i\), whether or not it accepts the proposal.
3. If some banks reject, government has three options:

 (a) Proceed with the rescue, but make up for the contributions of defecting banks. Resulting welfare losses are \(w_\lambda(b, s, a)\).

 (b) Resort to public bailout \((0, s_P)\) with welfare losses \(w_P = w_\lambda(0, s_P)\).

 (c) Abandon the rescue, which leads to welfare losses \(w_N = w_\lambda(0, 0)\).

An SPE \(\sigma\) is *weakly renegotiation proof (WRP)* if after every history \(h_t\), there exists no continuation SPE, which Pareto-dominates \(\sigma|_{h_t}\).
Suitable equilibrium selection criterion because the coordination of a bail-in is precisely a negotiation

During the bail-in of LTCM, Peter Fisher of the FRBNY sat down with representatives of LTCM’s creditors

Implausible that they would have ever agreed on a bail-in plan that is Pareto-dominated.
Lemma

Let \((b, s)\) be a feasible proposal of a complete bail-in. In an accepting equilibrium \(a\), bank \(i\) with \(b^i > 0\) accepts if and only if

1. \(w_{\lambda}(b, s, (0, a^{-i})) \geq \min (w_N, w_P)\), and

2. \(b^i - s^i \leq \begin{cases} \sum_{j=1}^{n} \pi^{ij}(L^j - p^j_N) & \text{if } w_N \leq w_P, \\ 0 & \text{if } w_P < w_N. \end{cases}\)

Bank \(i\) is willing to contribute only if

- there is no accepting equilibrium without bank \(i\) (no free-riding).
- share of benefits accruing to bank \(i\) outweighs cost of contribution.
Complete rescues

In a complete rescue \((b, s)\) with accepting equilibrium \(a\), \(\bar{p}(b, s, a) = L\). Maximal incentive-compatible net contribution is

\[
\eta^i := \begin{cases}
\min \left(\sum_{j=1}^{n} \pi^{ij}(L^j - p^j_N), (c^i + \alpha e^i + (\pi L)^i - L^i)^+ \right) & \text{if } \lambda \alpha \geq 1 - \alpha, \\
\min \left(\sum_{j=1}^{n} \pi^{ij}(L^j - p^j_N), (c^i + (\pi L)^i - L^i)^+ \right) & \text{if } \lambda \alpha < 1 - \alpha.
\end{cases}
\]
Complete rescues

In a complete rescue \((b, s)\) with accepting equilibrium \(a\),
\(\bar{p}(b, s, a) = L\).
Maximal incentive-compatible net contribution is

\[
\eta^i := \begin{cases}
\min \left(\sum_{j=1}^{n} \pi^{ij}(L^j - \bar{p}_N^j), (c^i + \alpha e^i + (\pi L)^i - L^i)^+ \right) & \text{if } \lambda \alpha \geq 1 - \alpha, \\
\min \left(\sum_{j=1}^{n} \pi^{ij}(L^j - \bar{p}_N^j), (c^i + (\pi L)^i - L^i)^+ \right) & \text{if } \lambda \alpha < 1 - \alpha.
\end{cases}
\]

If \(w_P < w_N\), then \(\bar{p}(s_P) = L\), hence no bank is willing to contribute.

\[\Rightarrow\] No-intervention threat is not credible.
Complete rescues

In a complete rescue \((b, s)\) with accepting equilibrium \(a\), \(\bar{p}(b, s, a) = L\). Maximal incentive-compatible net contribution is

\[
\eta^i := \begin{cases}
\min \left(\sum_{j=1}^{n} \pi^{ij}(L^j - p_N^j), (c^i + \alpha e^i + (\pi L)^i - L^i)^+ \right) & \text{if } \lambda \alpha \geq 1 - \alpha, \\
\min \left(\sum_{j=1}^{n} \pi^{ij}(L^j - p_N^j), (c^i + (\pi L)^i - L^i)^+ \right) & \text{if } \lambda \alpha < 1 - \alpha.
\end{cases}
\]

If \(w_P < w_N\), then \(\bar{p}(s_P) = L\), hence no bank is willing to contribute.

\[\Rightarrow\] No-intervention threat is not credible.

If \(w_P \geq w_N\), the threat is credible and regulator will aim to include banks whose incentive-compatible contributions have the largest welfare-impact.
Equilibrium bail-in plan

Theorem

Let ν^i denote the welfare-impact of largest incentive-compatible contribution of bank i. Let $i_1, \ldots, i_{n-|\mathcal{F}|}$ be a non-increasing ordering of ν^i.

1. If $w_P < w_N$, the unique SPE outcome is a public bailout.
2. If $w_N \leq w_P$, the unique WRPE outcome is a subsidized bail-in with

$$w_* = \min \left(w_P - \sum_{j=1}^{m} \nu_{ij}, \ w_N - \nu_{im+1} \right),$$

where $m := \min \left(k \mid w_P - \sum_{j=1}^{k} \nu_{ij} < w_N \right)$.
Equilibrium bail-in plan

Theorem

Let ν^i denote the welfare-impact of largest incentive-compatible contribution of bank i. Let $i_1, \ldots, i_{n-|F|}$ be a non-increasing ordering of ν^i.

1. If $w_P < w_N$, the unique SPE outcome is a public bailout.
2. If $w_N \leq w_P$, the unique WRPE outcome is a subsidized bail-in with

$$w_* = \min \left(w_P - \sum_{j=1}^{m} \nu^{ij}, w_N - \nu^{i_{m+1}} \right),$$

where $m \coloneqq \min \left(k \mid w_P - \sum_{j=1}^{k} \nu^{ij} < w_N \right)$.
Credibility of the Regulator’s Threat
Amplification of the shock

Lemma

Let χ_0 and χ_N denote the aggregate losses accruing to the financial sector immediately after the initial shock and after a default cascade without intervention, respectively. The threat is credible if and only if

$$\chi_N - \chi_0 \leq \lambda \chi_0 + \min (\lambda \alpha, 1 - \alpha) \sum_{i=1}^{n} \ell^i(\bar{p}(s_P)).$$

Larger weight λ to tax-dollars improves credibility of the threat.
Amplification of the shock

Lemma

Let χ_0 and χ_N denote the aggregate losses accruing to the financial sector immediately after the initial shock and after a default cascade without intervention, respectively. The threat is credible if and only if

$$\chi_N - \chi_0 \leq \lambda \chi_0 + \min (\lambda \alpha, 1 - \alpha) \sum_{i=1}^{n} \ell^i (\bar{p}(s_P)).$$

- Larger weight λ to tax-dollars improves credibility of the threat.
Amplification of the shock

Lemma

Let χ_0 and χ_N denote the aggregate losses accruing to the financial sector immediately after the initial shock and after a default cascade without intervention, respectively. The threat is credible if and only if

$$\chi_N - \chi_0 \leq \lambda \chi_0 + \min (\lambda \alpha, 1 - \alpha) \sum_{i=1}^{n} \ell^i (p(s_P)).$$

- Larger weight λ to tax-dollars improves credibility of the threat.
- From literature without intervention: dense interconnections, low recovery rates, and a large initial shock amplify the initial shock.
Amplification of the shock

Lemma

Let χ_0 and χ_N denote the aggregate losses accruing to the financial sector immediately after the initial shock and after a default cascade without intervention, respectively. The threat is credible if and only if

$$\chi_N - \chi_0 \leq \lambda \chi_0 + \min (\lambda \alpha, 1 - \alpha) \sum_{i=1}^{n} \ell^i (\bar{p}(s_P)).$$

- Larger weight λ to tax-dollars improves credibility of the threat.
- From literature without intervention: dense interconnections, low recovery rates, and a large initial shock amplify the initial shock.
Lemma

For fixed L, c, e, α, β, the equilibrium welfare losses after intervention are smaller in network π_1 than in network π_2 if the regulator’s threat is credible in network π_1 but not in network π_2.
Consider two financial systems \((L, \pi, c, e), (L, \pi', c, e)\). For any \(m < n\), interbank losses are strongly \(m\) more concentrated in network \(\pi\) than in \(\pi'\) if

(i) \(\eta^{(i)}(\pi) \geq \eta^{(i)}(\pi')\) for every \(i \leq m + 1\), where \(x^{(i)}\) denotes the \(i^{th}\)-largest entry of vector \(x\),

(ii) \(w_N(\pi) \geq w_N(\pi')\).

- Welfare losses in \(\pi\) equal the sum of the banks’ incentive compatible contributions: \(w_N(\pi) = \sum_{i=1}^{n} \eta^{i}(\pi)\).
- Largest \(m + 1\) losses in network \(\pi\) are higher than the corresponding losses in \(\pi'\).
Welfare Losses and Concentration

Proposition

Consider two financial systems $(L, \pi, c, e), (L, \pi', c, e)$ with homogeneous cash holdings such that $L = \pi L$. Suppose

$$w_N(\pi') \leq w_N(\pi) \leq w_N(\pi') + \lambda(\eta^{i_{m(\pi)}+1}(\pi) - \eta^{i_{m(\pi)}+1}(\pi')).$$

If interbank losses are strongly $m(\pi)$ more concentrated in network π than in π', then equilibrium welfare losses are lower in π than in π'.

- Even if welfare losses are higher in the least concentrated network in the absence of intervention, they become lower in the presence of intervention.
A model for financial intervention, where

- the structure of the intervention plan arises endogenously as the result of the strategic interaction between regulator and banks,
- the regulator cannot commit to an ex-post suboptimal resolution policy.
A model for financial intervention, where

- the structure of the intervention plan arises endogenously as the result of the strategic interaction between regulator and banks,
- the regulator cannot commit to an ex-post suboptimal resolution policy.

Equilibrium intervention plan:

- Prior studies have shown that, if shocks are not too high, dense interconnections are preferable to sparser interconnections
- The presence of intervention enlarges the range of shocks for which sparser networks are socially preferrable:
 - Bail-ins can be tailored in a way that the benefits accrue more strongly to the contributor
 - Lowers the banks’ incentive to free-ride and increases the sizes of the bank’s incentive compatible contribution.
 - As the amplification of a shock is smaller in a more concentrated network, the government can more credibly stand by idly
Thank you!
Assisted Bail-ins

Each bank i receives a subsidy s^i to purchase a part b^i of debt from fundamentally defaulting banks.

This is essentially a set of centralized transfers between banks:

- $b^i 1_{\{a^i=1\}} - s^i$ is bank i’s net contribution to the bail-in.
- $\sum_i (s^i - b^i 1_{\{a^i=1\}})$ is the government’s contribution.
- Includes public bailouts and privately backed bail-ins as special cases.

After transfers:

- Liabilities are cleared as before with $c^i(b, s, a) = c^i + s^i - b^i 1_{\{a^i=1\}}$.
- Bank i’s value is $V^i(b, s, a) := V^i(\bar{p}(b, s, a))$ and welfare losses are

$$w_\lambda(b, s, a) := w_\lambda(\bar{p}(b, s, a)) + \lambda \sum_{i=1}^{n} (s^i - b^i 1_{\{a^i=1\}}).$$
Regulator minimizes welfare losses over subsets B of banks to be rescued.

For a fixed B, coordination of bail-in works analogously:

- Only banks contribute, for which the threat is credible,
- Largest contributors are added first.
Numerical Example
Specific choice of network topologies

(a) The complete network.
(b) The ring network.

We compare the credibility in the ring network π_R and the complete network π_C in a financial system with $L^i = L$ and $c^i = c$ for every bank i.

A shock hits the financial system such that

- there is 1 fundamentally defaulting bank with shortfall χ_0,
- n_l banks are lowly capitalized with value of outside asset e_l,
- n_h banks are highly capitalized with $e_h > e_l$.

35117:1
Specific choice of network topologies

We compare the credibility in the ring network π_R and the complete network π_C in a financial system with $L^i = L$ and $c^i = c$ for every bank i.

A shock hits the financial system such that

- there is 1 fundamentally defaulting bank with shortfall χ_0,
- n_l banks are lowly capitalized with value of outside asset e_l,
- n_h banks are highly capitalized with $e_h > e_l$.
Comparison of welfare losses

Welfare losses of optimal bail-in is of the form

$$WP - \eta^i_1 - \eta^i_2 - \ldots - \eta^i_m,$$

where η^i is the maximal incentive-compatible contribution of bank i, related to i’s losses in absence of intervention.

- In densely connected network: shock distributed among many banks. Incentive to free-ride is large \rightarrow small contributions.
- In sparsely connected network: few creditors who would suffer large losses in case of no intervention \rightarrow large contributions.
Comparison of welfare losses

Welfare losses of optimal bail-in is of the form

$$w_P - \eta^{i_1} - \eta^{i_2} - \ldots - \eta^{i_m},$$

where η^{i} is the maximal incentive-compatible contribution of bank i, related to i’s losses in absence of intervention.

- In densely connected network: shock distributed among many banks. Incentive to free-ride is large \rightarrow small contributions.
- In sparsely connected network: few creditors who would suffer large losses in case of no intervention \rightarrow large contributions.

![Diagram showing shock sizes and beta values](image)
Without intervention: clearing payments

A clearing payment vector p is a solution to

$$p^i = \begin{cases} L^i & \text{if } c^i + \alpha e^i + \sum_j \pi_{ij} p^j \geq L^i, \\ \beta(c^i + \alpha e^i + \sum_j \pi_{ij} p^j)^+ & \text{otherwise.} \end{cases}$$

- Banks in $D(p) := \{ i \mid p^i < L^i \}$ default.
Without intervention: clearing payments

A clearing payment vector p is a solution to

$$p^i = \begin{cases}
L^i & \text{if } c^i + \alpha e^i + \sum_j \pi^{ij} p^j \geq L^i, \\
\beta(c^i + \alpha e^i + \sum_j \pi^{ij} p^j)^+ & \text{otherwise.}
\end{cases}$$

- Banks in $\mathcal{D}(p) := \{ i \mid p^i < L^i \}$ default.
- Bank i has to liquidate $\ell^i(p) = \min \left(\frac{1}{\alpha} \left(L^i - c^i - \sum_j \pi^{ij} p^j \right)^+, e^i \right)$.
- Senior creditors (depositors) of i lose $\delta^i(p) = \left(c^i + \alpha e^i + \sum_j \pi^{ij} p^j \right)^-$.
Without intervention: clearing payments

With clearing payment vector p, the value of each bank i is

$$V^i(p) = \begin{cases} 0 & \text{if } i \in D(p), \\ c^i + e^i - (1 - \alpha)\ell^i(p) + (\pi p)^i - p^i & \text{otherwise.} \end{cases}$$

Welfare losses are equal to

$$w_\lambda(p) = (1 - \alpha) \sum_{i=1}^{n} \ell^i(p) + \frac{1 - \beta}{\beta} \sum_{i \in D(p)} p^i + \lambda \sum_{i \in D(p)} \delta^i(p).$$
Without intervention: clearing payments

With clearing payment vector p, the value of each bank i is

$$V^i(p) = \begin{cases}
0 & i \in D(p), \\
c^i + e^i - (1 - \alpha)\ell^i(p) + (\pi p)^i - p^i & \text{otherwise.}
\end{cases}$$

Welfare losses are equal to

$$w_\lambda(p) = (1 - \alpha) \sum_{i=1}^{n} \ell^i(p) + \frac{1 - \beta}{\beta} \sum_{i\in D(p)} p^i + \lambda \sum_{i\in D(p)} \delta^i(p).$$

- **deadweight losses**
- **depositor’s losses**
Without intervention: clearing payments

With clearing payment vector p, the value of each bank i is

$$V^i(p) = \begin{cases}
0 & \text{if } i \in \mathcal{D}(p), \\
\kappa^i + \epsilon^i - (1 - \alpha)\ell^i(p) + (\pi p)^i - p^i & \text{otherwise.}
\end{cases}$$

Welfare losses are equal to

$$w_\lambda(p) = (1 - \alpha) \sum_{i=1}^{n} \ell^i(p) + \frac{1 - \beta}{\beta} \sum_{i \in \mathcal{D}(p)} p^i + \lambda \sum_{i \in \mathcal{D}(p)} \delta^i(p).$$

Lemma

Set of clearing payments forms a (non-empty) complete lattice. Greatest clearing payment \bar{p} Pareto-dominates all other clearing payments.
Weak renegotiation proofness

Government makes a proposal such that at least 5 banks need to accept for the government to proceed.

- Any response where at most 3 banks accept is a trivial SPE.
- Outcome is identical to all banks rejecting the proposal.
Weak renegotiation proofness

Government makes a proposal such that at least 5 banks need to accept for the government to proceed.

- Any response where at most 3 banks accept is a trivial SPE.
- Outcome is identical to all banks rejecting the proposal.

For given proposal \((b, s)\), a continuation equilibrium \(a = (a^0, a^1, \ldots, a^n)\) is called an accepting equilibrium if \(a^0(b, s, a^1, \ldots, a^n) = \text{"proceed"}\).

Lemma

All accepting equilibria are WRP. Rejecting equilibria are WRP if and only if there exists no accepting equilibrium.
Comparison of credibility in different networks

If threat is credible in π and π', two counteracting forces:

- incentive-compatible contributions are larger in π than in π',
- since $w_N(\pi) \geq w_N(\pi')$, the no free-riding condition implies fewer banks included in bail-in in π.

Interbank losses are *strongly more concentrated* in π than in π' if incentive compatible contributions are larger in π than in π'

Lemma

Let (L, π, c, e) and (L, π', c, e) be regular with $w_N(\pi) = w_N(\pi')$. If losses are strongly more concentrated in π than in π', then $w_*(\pi) \leq w_*(\pi')$.
Comparison of credibility in different networks

- Prior studies have shown that dense interconnections may amplify rather than absorb initial losses (Acemoglu et al. (2015), Haldane (2009))
- Our results suggest that this phenomenon is strengthened in the presence of intervention:
 - In a more concentrated network, bail-ins can be tailored in a way that the benefits accrue more strongly to the contributor
 - Lowers the banks’ incentive to free-ride and increases the sizes of the bank’s incentive compatible contribution.
 - As the amplification of a shock is smaller in a more concentrated network, the government can more credibly stand by idly
 - Enlarge the region of shock sizes, for which a bail-in strategy is credible.

